3.2.87 \(\int \frac {\coth ^2(c+d x)}{(a+b \tanh ^2(c+d x))^2} \, dx\) [187]

Optimal. Leaf size=119 \[ \frac {x}{(a+b)^2}-\frac {b^{3/2} (5 a+3 b) \text {ArcTan}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{2 a^{5/2} (a+b)^2 d}-\frac {(2 a+3 b) \coth (c+d x)}{2 a^2 (a+b) d}+\frac {b \coth (c+d x)}{2 a (a+b) d \left (a+b \tanh ^2(c+d x)\right )} \]

[Out]

x/(a+b)^2-1/2*b^(3/2)*(5*a+3*b)*arctan(b^(1/2)*tanh(d*x+c)/a^(1/2))/a^(5/2)/(a+b)^2/d-1/2*(2*a+3*b)*coth(d*x+c
)/a^2/(a+b)/d+1/2*b*coth(d*x+c)/a/(a+b)/d/(a+b*tanh(d*x+c)^2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3751, 483, 597, 536, 212, 211} \begin {gather*} -\frac {b^{3/2} (5 a+3 b) \text {ArcTan}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{2 a^{5/2} d (a+b)^2}-\frac {(2 a+3 b) \coth (c+d x)}{2 a^2 d (a+b)}+\frac {b \coth (c+d x)}{2 a d (a+b) \left (a+b \tanh ^2(c+d x)\right )}+\frac {x}{(a+b)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Coth[c + d*x]^2/(a + b*Tanh[c + d*x]^2)^2,x]

[Out]

x/(a + b)^2 - (b^(3/2)*(5*a + 3*b)*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/(2*a^(5/2)*(a + b)^2*d) - ((2*a +
3*b)*Coth[c + d*x])/(2*a^2*(a + b)*d) + (b*Coth[c + d*x])/(2*a*(a + b)*d*(a + b*Tanh[c + d*x]^2))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 483

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*(e*
x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*e*n*(b*c - a*d)*(p + 1))), x] + Dist[1/(a*n*(b*c - a*d)
*(p + 1)), Int[(e*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*b*(m + 1) + n*(b*c - a*d)*(p + 1) + d*b*(m + n
*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ
[p, -1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 536

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 597

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*g*(m + 1))), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rule 3751

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff/f), Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2
 + ff^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \frac {\coth ^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx &=\frac {\text {Subst}\left (\int \frac {1}{x^2 \left (1-x^2\right ) \left (a+b x^2\right )^2} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac {b \coth (c+d x)}{2 a (a+b) d \left (a+b \tanh ^2(c+d x)\right )}-\frac {\text {Subst}\left (\int \frac {-2 a-3 b+3 b x^2}{x^2 \left (1-x^2\right ) \left (a+b x^2\right )} \, dx,x,\tanh (c+d x)\right )}{2 a (a+b) d}\\ &=-\frac {(2 a+3 b) \coth (c+d x)}{2 a^2 (a+b) d}+\frac {b \coth (c+d x)}{2 a (a+b) d \left (a+b \tanh ^2(c+d x)\right )}+\frac {\text {Subst}\left (\int \frac {2 a^2-2 a b-3 b^2+b (2 a+3 b) x^2}{\left (1-x^2\right ) \left (a+b x^2\right )} \, dx,x,\tanh (c+d x)\right )}{2 a^2 (a+b) d}\\ &=-\frac {(2 a+3 b) \coth (c+d x)}{2 a^2 (a+b) d}+\frac {b \coth (c+d x)}{2 a (a+b) d \left (a+b \tanh ^2(c+d x)\right )}+\frac {\text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\tanh (c+d x)\right )}{(a+b)^2 d}-\frac {\left (b^2 (5 a+3 b)\right ) \text {Subst}\left (\int \frac {1}{a+b x^2} \, dx,x,\tanh (c+d x)\right )}{2 a^2 (a+b)^2 d}\\ &=\frac {x}{(a+b)^2}-\frac {b^{3/2} (5 a+3 b) \tan ^{-1}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{2 a^{5/2} (a+b)^2 d}-\frac {(2 a+3 b) \coth (c+d x)}{2 a^2 (a+b) d}+\frac {b \coth (c+d x)}{2 a (a+b) d \left (a+b \tanh ^2(c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.23, size = 111, normalized size = 0.93 \begin {gather*} -\frac {-\frac {2 (c+d x)}{(a+b)^2}+\frac {b^{3/2} (5 a+3 b) \text {ArcTan}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{a^{5/2} (a+b)^2}+\frac {2 \coth (c+d x)}{a^2}+\frac {b^2 \sinh (2 (c+d x))}{a^2 (a+b) (a-b+(a+b) \cosh (2 (c+d x)))}}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Coth[c + d*x]^2/(a + b*Tanh[c + d*x]^2)^2,x]

[Out]

-1/2*((-2*(c + d*x))/(a + b)^2 + (b^(3/2)*(5*a + 3*b)*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/(a^(5/2)*(a + b
)^2) + (2*Coth[c + d*x])/a^2 + (b^2*Sinh[2*(c + d*x)])/(a^2*(a + b)*(a - b + (a + b)*Cosh[2*(c + d*x)])))/d

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(328\) vs. \(2(105)=210\).
time = 2.86, size = 329, normalized size = 2.76

method result size
derivativedivides \(\frac {-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a^{2}}-\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{\left (a +b \right )^{2}}+\frac {2 b^{2} \left (\frac {\left (-\frac {a}{2}-\frac {b}{2}\right ) \left (\tanh ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-\frac {a}{2}-\frac {b}{2}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{a \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 a \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4 b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a}+\frac {\left (5 a +3 b \right ) a \left (-\frac {\left (-a +\sqrt {b \left (a +b \right )}-b \right ) \arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}+\frac {\left (a +\sqrt {b \left (a +b \right )}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{2}\right )}{\left (a +b \right )^{2} a^{2}}-\frac {1}{2 a^{2} \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}+\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{\left (a +b \right )^{2}}}{d}\) \(329\)
default \(\frac {-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a^{2}}-\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{\left (a +b \right )^{2}}+\frac {2 b^{2} \left (\frac {\left (-\frac {a}{2}-\frac {b}{2}\right ) \left (\tanh ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-\frac {a}{2}-\frac {b}{2}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{a \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 a \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4 b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a}+\frac {\left (5 a +3 b \right ) a \left (-\frac {\left (-a +\sqrt {b \left (a +b \right )}-b \right ) \arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}+\frac {\left (a +\sqrt {b \left (a +b \right )}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{2}\right )}{\left (a +b \right )^{2} a^{2}}-\frac {1}{2 a^{2} \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}+\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{\left (a +b \right )^{2}}}{d}\) \(329\)
risch \(\frac {x}{a^{2}+2 a b +b^{2}}-\frac {2 a^{3} {\mathrm e}^{4 d x +4 c}+6 a^{2} b \,{\mathrm e}^{4 d x +4 c}+5 a \,b^{2} {\mathrm e}^{4 d x +4 c}+3 b^{3} {\mathrm e}^{4 d x +4 c}+4 a^{3} {\mathrm e}^{2 d x +2 c}+4 a^{2} b \,{\mathrm e}^{2 d x +2 c}-4 a \,b^{2} {\mathrm e}^{2 d x +2 c}-6 b^{3} {\mathrm e}^{2 d x +2 c}+2 a^{3}+6 a^{2} b +7 a \,b^{2}+3 b^{3}}{d \,a^{2} \left (a +b \right )^{2} \left (a \,{\mathrm e}^{4 d x +4 c}+b \,{\mathrm e}^{4 d x +4 c}+2 a \,{\mathrm e}^{2 d x +2 c}-2 b \,{\mathrm e}^{2 d x +2 c}+a +b \right ) \left ({\mathrm e}^{2 d x +2 c}-1\right )}+\frac {5 \sqrt {-a b}\, \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {-a b}-a +b}{a +b}\right ) b}{4 a^{2} \left (a +b \right )^{2} d}+\frac {3 \sqrt {-a b}\, b^{2} \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {-a b}-a +b}{a +b}\right )}{4 a^{3} \left (a +b \right )^{2} d}-\frac {5 \sqrt {-a b}\, \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a +2 \sqrt {-a b}-b}{a +b}\right ) b}{4 a^{2} \left (a +b \right )^{2} d}-\frac {3 \sqrt {-a b}\, b^{2} \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a +2 \sqrt {-a b}-b}{a +b}\right )}{4 a^{3} \left (a +b \right )^{2} d}\) \(439\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(d*x+c)^2/(a+b*tanh(d*x+c)^2)^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(-1/2/a^2*tanh(1/2*d*x+1/2*c)-1/(a+b)^2*ln(tanh(1/2*d*x+1/2*c)-1)+2*b^2/(a+b)^2/a^2*(((-1/2*a-1/2*b)*tanh(
1/2*d*x+1/2*c)^3+(-1/2*a-1/2*b)*tanh(1/2*d*x+1/2*c))/(a*tanh(1/2*d*x+1/2*c)^4+2*a*tanh(1/2*d*x+1/2*c)^2+4*b*ta
nh(1/2*d*x+1/2*c)^2+a)+1/2*(5*a+3*b)*a*(-1/2*(-a+(b*(a+b))^(1/2)-b)/a/(b*(a+b))^(1/2)/((2*(b*(a+b))^(1/2)-a-2*
b)*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)/((2*(b*(a+b))^(1/2)-a-2*b)*a)^(1/2))+1/2*(a+(b*(a+b))^(1/2)+b)/a/(b*
(a+b))^(1/2)/((2*(b*(a+b))^(1/2)+a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(b*(a+b))^(1/2)+a+2*b)*a)^(1
/2))))-1/2/a^2/tanh(1/2*d*x+1/2*c)+1/(a+b)^2*ln(tanh(1/2*d*x+1/2*c)+1))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 976 vs. \(2 (105) = 210\).
time = 0.68, size = 976, normalized size = 8.20 \begin {gather*} -\frac {{\left (2 \, a b + b^{2}\right )} \log \left ({\left (a + b\right )} e^{\left (4 \, d x + 4 \, c\right )} + 2 \, {\left (a - b\right )} e^{\left (2 \, d x + 2 \, c\right )} + a + b\right )}{4 \, {\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )} d} + \frac {{\left (2 \, a b + b^{2}\right )} \log \left (2 \, {\left (a - b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (a + b\right )} e^{\left (-4 \, d x - 4 \, c\right )} + a + b\right )}{4 \, {\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )} d} + \frac {{\left (3 \, a^{2} b - 4 \, a b^{2} - 3 \, b^{3}\right )} \arctan \left (\frac {{\left (a + b\right )} e^{\left (2 \, d x + 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{8 \, {\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )} \sqrt {a b} d} - \frac {{\left (3 \, a^{2} b - 4 \, a b^{2} - 3 \, b^{3}\right )} \arctan \left (\frac {{\left (a + b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{8 \, {\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )} \sqrt {a b} d} + \frac {2 \, a^{3} + 5 \, a^{2} b + 6 \, a b^{2} + 3 \, b^{3} + {\left (2 \, a^{3} + 7 \, a^{2} b + 3 \, b^{3}\right )} e^{\left (4 \, d x + 4 \, c\right )} + 2 \, {\left (2 \, a^{3} + 2 \, a^{2} b + a b^{2} - 3 \, b^{3}\right )} e^{\left (2 \, d x + 2 \, c\right )}}{4 \, {\left (a^{5} + 3 \, a^{4} b + 3 \, a^{3} b^{2} + a^{2} b^{3} - {\left (a^{5} + 3 \, a^{4} b + 3 \, a^{3} b^{2} + a^{2} b^{3}\right )} e^{\left (6 \, d x + 6 \, c\right )} - {\left (a^{5} - a^{4} b - 5 \, a^{3} b^{2} - 3 \, a^{2} b^{3}\right )} e^{\left (4 \, d x + 4 \, c\right )} + {\left (a^{5} - a^{4} b - 5 \, a^{3} b^{2} - 3 \, a^{2} b^{3}\right )} e^{\left (2 \, d x + 2 \, c\right )}\right )} d} - \frac {2 \, a^{3} + 5 \, a^{2} b + 6 \, a b^{2} + 3 \, b^{3} + 2 \, {\left (2 \, a^{3} + 2 \, a^{2} b + a b^{2} - 3 \, b^{3}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (2 \, a^{3} + 7 \, a^{2} b + 3 \, b^{3}\right )} e^{\left (-4 \, d x - 4 \, c\right )}}{4 \, {\left (a^{5} + 3 \, a^{4} b + 3 \, a^{3} b^{2} + a^{2} b^{3} + {\left (a^{5} - a^{4} b - 5 \, a^{3} b^{2} - 3 \, a^{2} b^{3}\right )} e^{\left (-2 \, d x - 2 \, c\right )} - {\left (a^{5} - a^{4} b - 5 \, a^{3} b^{2} - 3 \, a^{2} b^{3}\right )} e^{\left (-4 \, d x - 4 \, c\right )} - {\left (a^{5} + 3 \, a^{4} b + 3 \, a^{3} b^{2} + a^{2} b^{3}\right )} e^{\left (-6 \, d x - 6 \, c\right )}\right )} d} - \frac {2 \, a^{2} + 5 \, a b + 3 \, b^{2} + 2 \, {\left (2 \, a^{2} - 3 \, b^{2}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (2 \, a^{2} + 3 \, a b + 3 \, b^{2}\right )} e^{\left (-4 \, d x - 4 \, c\right )}}{2 \, {\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2} + {\left (a^{4} - 2 \, a^{3} b - 3 \, a^{2} b^{2}\right )} e^{\left (-2 \, d x - 2 \, c\right )} - {\left (a^{4} - 2 \, a^{3} b - 3 \, a^{2} b^{2}\right )} e^{\left (-4 \, d x - 4 \, c\right )} - {\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )} e^{\left (-6 \, d x - 6 \, c\right )}\right )} d} + \frac {3 \, b \arctan \left (\frac {{\left (a + b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{4 \, \sqrt {a b} a^{2} d} + \frac {\log \left (e^{\left (2 \, d x + 2 \, c\right )} - 1\right )}{2 \, a^{2} d} - \frac {\log \left (e^{\left (-2 \, d x - 2 \, c\right )} - 1\right )}{2 \, a^{2} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)^2/(a+b*tanh(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

-1/4*(2*a*b + b^2)*log((a + b)*e^(4*d*x + 4*c) + 2*(a - b)*e^(2*d*x + 2*c) + a + b)/((a^4 + 2*a^3*b + a^2*b^2)
*d) + 1/4*(2*a*b + b^2)*log(2*(a - b)*e^(-2*d*x - 2*c) + (a + b)*e^(-4*d*x - 4*c) + a + b)/((a^4 + 2*a^3*b + a
^2*b^2)*d) + 1/8*(3*a^2*b - 4*a*b^2 - 3*b^3)*arctan(1/2*((a + b)*e^(2*d*x + 2*c) + a - b)/sqrt(a*b))/((a^4 + 2
*a^3*b + a^2*b^2)*sqrt(a*b)*d) - 1/8*(3*a^2*b - 4*a*b^2 - 3*b^3)*arctan(1/2*((a + b)*e^(-2*d*x - 2*c) + a - b)
/sqrt(a*b))/((a^4 + 2*a^3*b + a^2*b^2)*sqrt(a*b)*d) + 1/4*(2*a^3 + 5*a^2*b + 6*a*b^2 + 3*b^3 + (2*a^3 + 7*a^2*
b + 3*b^3)*e^(4*d*x + 4*c) + 2*(2*a^3 + 2*a^2*b + a*b^2 - 3*b^3)*e^(2*d*x + 2*c))/((a^5 + 3*a^4*b + 3*a^3*b^2
+ a^2*b^3 - (a^5 + 3*a^4*b + 3*a^3*b^2 + a^2*b^3)*e^(6*d*x + 6*c) - (a^5 - a^4*b - 5*a^3*b^2 - 3*a^2*b^3)*e^(4
*d*x + 4*c) + (a^5 - a^4*b - 5*a^3*b^2 - 3*a^2*b^3)*e^(2*d*x + 2*c))*d) - 1/4*(2*a^3 + 5*a^2*b + 6*a*b^2 + 3*b
^3 + 2*(2*a^3 + 2*a^2*b + a*b^2 - 3*b^3)*e^(-2*d*x - 2*c) + (2*a^3 + 7*a^2*b + 3*b^3)*e^(-4*d*x - 4*c))/((a^5
+ 3*a^4*b + 3*a^3*b^2 + a^2*b^3 + (a^5 - a^4*b - 5*a^3*b^2 - 3*a^2*b^3)*e^(-2*d*x - 2*c) - (a^5 - a^4*b - 5*a^
3*b^2 - 3*a^2*b^3)*e^(-4*d*x - 4*c) - (a^5 + 3*a^4*b + 3*a^3*b^2 + a^2*b^3)*e^(-6*d*x - 6*c))*d) - 1/2*(2*a^2
+ 5*a*b + 3*b^2 + 2*(2*a^2 - 3*b^2)*e^(-2*d*x - 2*c) + (2*a^2 + 3*a*b + 3*b^2)*e^(-4*d*x - 4*c))/((a^4 + 2*a^3
*b + a^2*b^2 + (a^4 - 2*a^3*b - 3*a^2*b^2)*e^(-2*d*x - 2*c) - (a^4 - 2*a^3*b - 3*a^2*b^2)*e^(-4*d*x - 4*c) - (
a^4 + 2*a^3*b + a^2*b^2)*e^(-6*d*x - 6*c))*d) + 3/4*b*arctan(1/2*((a + b)*e^(-2*d*x - 2*c) + a - b)/sqrt(a*b))
/(sqrt(a*b)*a^2*d) + 1/2*log(e^(2*d*x + 2*c) - 1)/(a^2*d) - 1/2*log(e^(-2*d*x - 2*c) - 1)/(a^2*d)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 1702 vs. \(2 (105) = 210\).
time = 0.43, size = 3725, normalized size = 31.30 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)^2/(a+b*tanh(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

[1/4*(4*(a^3 + a^2*b)*d*x*cosh(d*x + c)^6 + 24*(a^3 + a^2*b)*d*x*cosh(d*x + c)*sinh(d*x + c)^5 + 4*(a^3 + a^2*
b)*d*x*sinh(d*x + c)^6 - 4*(2*a^3 + 6*a^2*b + 5*a*b^2 + 3*b^3 - (a^3 - 3*a^2*b)*d*x)*cosh(d*x + c)^4 + 4*(15*(
a^3 + a^2*b)*d*x*cosh(d*x + c)^2 - 2*a^3 - 6*a^2*b - 5*a*b^2 - 3*b^3 + (a^3 - 3*a^2*b)*d*x)*sinh(d*x + c)^4 +
16*(5*(a^3 + a^2*b)*d*x*cosh(d*x + c)^3 - (2*a^3 + 6*a^2*b + 5*a*b^2 + 3*b^3 - (a^3 - 3*a^2*b)*d*x)*cosh(d*x +
 c))*sinh(d*x + c)^3 - 8*a^3 - 24*a^2*b - 28*a*b^2 - 12*b^3 - 4*(a^3 + a^2*b)*d*x - 4*(4*a^3 + 4*a^2*b - 4*a*b
^2 - 6*b^3 + (a^3 - 3*a^2*b)*d*x)*cosh(d*x + c)^2 + 4*(15*(a^3 + a^2*b)*d*x*cosh(d*x + c)^4 - 4*a^3 - 4*a^2*b
+ 4*a*b^2 + 6*b^3 - (a^3 - 3*a^2*b)*d*x - 6*(2*a^3 + 6*a^2*b + 5*a*b^2 + 3*b^3 - (a^3 - 3*a^2*b)*d*x)*cosh(d*x
 + c)^2)*sinh(d*x + c)^2 + ((5*a^2*b + 8*a*b^2 + 3*b^3)*cosh(d*x + c)^6 + 6*(5*a^2*b + 8*a*b^2 + 3*b^3)*cosh(d
*x + c)*sinh(d*x + c)^5 + (5*a^2*b + 8*a*b^2 + 3*b^3)*sinh(d*x + c)^6 + (5*a^2*b - 12*a*b^2 - 9*b^3)*cosh(d*x
+ c)^4 + (5*a^2*b - 12*a*b^2 - 9*b^3 + 15*(5*a^2*b + 8*a*b^2 + 3*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^4 + 4*(5*
(5*a^2*b + 8*a*b^2 + 3*b^3)*cosh(d*x + c)^3 + (5*a^2*b - 12*a*b^2 - 9*b^3)*cosh(d*x + c))*sinh(d*x + c)^3 - 5*
a^2*b - 8*a*b^2 - 3*b^3 - (5*a^2*b - 12*a*b^2 - 9*b^3)*cosh(d*x + c)^2 + (15*(5*a^2*b + 8*a*b^2 + 3*b^3)*cosh(
d*x + c)^4 - 5*a^2*b + 12*a*b^2 + 9*b^3 + 6*(5*a^2*b - 12*a*b^2 - 9*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^2 + 2*
(3*(5*a^2*b + 8*a*b^2 + 3*b^3)*cosh(d*x + c)^5 + 2*(5*a^2*b - 12*a*b^2 - 9*b^3)*cosh(d*x + c)^3 - (5*a^2*b - 1
2*a*b^2 - 9*b^3)*cosh(d*x + c))*sinh(d*x + c))*sqrt(-b/a)*log(((a^2 + 2*a*b + b^2)*cosh(d*x + c)^4 + 4*(a^2 +
2*a*b + b^2)*cosh(d*x + c)*sinh(d*x + c)^3 + (a^2 + 2*a*b + b^2)*sinh(d*x + c)^4 + 2*(a^2 - b^2)*cosh(d*x + c)
^2 + 2*(3*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^2 + a^2 - b^2)*sinh(d*x + c)^2 + a^2 - 6*a*b + b^2 + 4*((a^2 + 2*a
*b + b^2)*cosh(d*x + c)^3 + (a^2 - b^2)*cosh(d*x + c))*sinh(d*x + c) - 4*((a^2 + a*b)*cosh(d*x + c)^2 + 2*(a^2
 + a*b)*cosh(d*x + c)*sinh(d*x + c) + (a^2 + a*b)*sinh(d*x + c)^2 + a^2 - a*b)*sqrt(-b/a))/((a + b)*cosh(d*x +
 c)^4 + 4*(a + b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a + b)*sinh(d*x + c)^4 + 2*(a - b)*cosh(d*x + c)^2 + 2*(3*(
a + b)*cosh(d*x + c)^2 + a - b)*sinh(d*x + c)^2 + 4*((a + b)*cosh(d*x + c)^3 + (a - b)*cosh(d*x + c))*sinh(d*x
 + c) + a + b)) + 8*(3*(a^3 + a^2*b)*d*x*cosh(d*x + c)^5 - 2*(2*a^3 + 6*a^2*b + 5*a*b^2 + 3*b^3 - (a^3 - 3*a^2
*b)*d*x)*cosh(d*x + c)^3 - (4*a^3 + 4*a^2*b - 4*a*b^2 - 6*b^3 + (a^3 - 3*a^2*b)*d*x)*cosh(d*x + c))*sinh(d*x +
 c))/((a^5 + 3*a^4*b + 3*a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^6 + 6*(a^5 + 3*a^4*b + 3*a^3*b^2 + a^2*b^3)*d*cosh
(d*x + c)*sinh(d*x + c)^5 + (a^5 + 3*a^4*b + 3*a^3*b^2 + a^2*b^3)*d*sinh(d*x + c)^6 + (a^5 - a^4*b - 5*a^3*b^2
 - 3*a^2*b^3)*d*cosh(d*x + c)^4 + (15*(a^5 + 3*a^4*b + 3*a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^2 + (a^5 - a^4*b -
 5*a^3*b^2 - 3*a^2*b^3)*d)*sinh(d*x + c)^4 - (a^5 - a^4*b - 5*a^3*b^2 - 3*a^2*b^3)*d*cosh(d*x + c)^2 + 4*(5*(a
^5 + 3*a^4*b + 3*a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^3 + (a^5 - a^4*b - 5*a^3*b^2 - 3*a^2*b^3)*d*cosh(d*x + c))
*sinh(d*x + c)^3 + (15*(a^5 + 3*a^4*b + 3*a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^4 + 6*(a^5 - a^4*b - 5*a^3*b^2 -
3*a^2*b^3)*d*cosh(d*x + c)^2 - (a^5 - a^4*b - 5*a^3*b^2 - 3*a^2*b^3)*d)*sinh(d*x + c)^2 - (a^5 + 3*a^4*b + 3*a
^3*b^2 + a^2*b^3)*d + 2*(3*(a^5 + 3*a^4*b + 3*a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^5 + 2*(a^5 - a^4*b - 5*a^3*b^
2 - 3*a^2*b^3)*d*cosh(d*x + c)^3 - (a^5 - a^4*b - 5*a^3*b^2 - 3*a^2*b^3)*d*cosh(d*x + c))*sinh(d*x + c)), 1/2*
(2*(a^3 + a^2*b)*d*x*cosh(d*x + c)^6 + 12*(a^3 + a^2*b)*d*x*cosh(d*x + c)*sinh(d*x + c)^5 + 2*(a^3 + a^2*b)*d*
x*sinh(d*x + c)^6 - 2*(2*a^3 + 6*a^2*b + 5*a*b^2 + 3*b^3 - (a^3 - 3*a^2*b)*d*x)*cosh(d*x + c)^4 + 2*(15*(a^3 +
 a^2*b)*d*x*cosh(d*x + c)^2 - 2*a^3 - 6*a^2*b - 5*a*b^2 - 3*b^3 + (a^3 - 3*a^2*b)*d*x)*sinh(d*x + c)^4 + 8*(5*
(a^3 + a^2*b)*d*x*cosh(d*x + c)^3 - (2*a^3 + 6*a^2*b + 5*a*b^2 + 3*b^3 - (a^3 - 3*a^2*b)*d*x)*cosh(d*x + c))*s
inh(d*x + c)^3 - 4*a^3 - 12*a^2*b - 14*a*b^2 - 6*b^3 - 2*(a^3 + a^2*b)*d*x - 2*(4*a^3 + 4*a^2*b - 4*a*b^2 - 6*
b^3 + (a^3 - 3*a^2*b)*d*x)*cosh(d*x + c)^2 + 2*(15*(a^3 + a^2*b)*d*x*cosh(d*x + c)^4 - 4*a^3 - 4*a^2*b + 4*a*b
^2 + 6*b^3 - (a^3 - 3*a^2*b)*d*x - 6*(2*a^3 + 6*a^2*b + 5*a*b^2 + 3*b^3 - (a^3 - 3*a^2*b)*d*x)*cosh(d*x + c)^2
)*sinh(d*x + c)^2 - ((5*a^2*b + 8*a*b^2 + 3*b^3)*cosh(d*x + c)^6 + 6*(5*a^2*b + 8*a*b^2 + 3*b^3)*cosh(d*x + c)
*sinh(d*x + c)^5 + (5*a^2*b + 8*a*b^2 + 3*b^3)*sinh(d*x + c)^6 + (5*a^2*b - 12*a*b^2 - 9*b^3)*cosh(d*x + c)^4
+ (5*a^2*b - 12*a*b^2 - 9*b^3 + 15*(5*a^2*b + 8*a*b^2 + 3*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^4 + 4*(5*(5*a^2*
b + 8*a*b^2 + 3*b^3)*cosh(d*x + c)^3 + (5*a^2*b - 12*a*b^2 - 9*b^3)*cosh(d*x + c))*sinh(d*x + c)^3 - 5*a^2*b -
 8*a*b^2 - 3*b^3 - (5*a^2*b - 12*a*b^2 - 9*b^3)*cosh(d*x + c)^2 + (15*(5*a^2*b + 8*a*b^2 + 3*b^3)*cosh(d*x + c
)^4 - 5*a^2*b + 12*a*b^2 + 9*b^3 + 6*(5*a^2*b - 12*a*b^2 - 9*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^2 + 2*(3*(5*a
^2*b + 8*a*b^2 + 3*b^3)*cosh(d*x + c)^5 + 2*(5*...

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\coth ^{2}{\left (c + d x \right )}}{\left (a + b \tanh ^{2}{\left (c + d x \right )}\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)**2/(a+b*tanh(d*x+c)**2)**2,x)

[Out]

Integral(coth(c + d*x)**2/(a + b*tanh(c + d*x)**2)**2, x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 336 vs. \(2 (105) = 210\).
time = 0.53, size = 336, normalized size = 2.82 \begin {gather*} -\frac {\frac {{\left (5 \, a b^{2} + 3 \, b^{3}\right )} \arctan \left (\frac {a e^{\left (2 \, d x + 2 \, c\right )} + b e^{\left (2 \, d x + 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{{\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )} \sqrt {a b}} - \frac {2 \, {\left (d x + c\right )}}{a^{2} + 2 \, a b + b^{2}} + \frac {2 \, {\left (2 \, a^{3} e^{\left (4 \, d x + 4 \, c\right )} + 6 \, a^{2} b e^{\left (4 \, d x + 4 \, c\right )} + 5 \, a b^{2} e^{\left (4 \, d x + 4 \, c\right )} + 3 \, b^{3} e^{\left (4 \, d x + 4 \, c\right )} + 4 \, a^{3} e^{\left (2 \, d x + 2 \, c\right )} + 4 \, a^{2} b e^{\left (2 \, d x + 2 \, c\right )} - 4 \, a b^{2} e^{\left (2 \, d x + 2 \, c\right )} - 6 \, b^{3} e^{\left (2 \, d x + 2 \, c\right )} + 2 \, a^{3} + 6 \, a^{2} b + 7 \, a b^{2} + 3 \, b^{3}\right )}}{{\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )} {\left (a e^{\left (6 \, d x + 6 \, c\right )} + b e^{\left (6 \, d x + 6 \, c\right )} + a e^{\left (4 \, d x + 4 \, c\right )} - 3 \, b e^{\left (4 \, d x + 4 \, c\right )} - a e^{\left (2 \, d x + 2 \, c\right )} + 3 \, b e^{\left (2 \, d x + 2 \, c\right )} - a - b\right )}}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)^2/(a+b*tanh(d*x+c)^2)^2,x, algorithm="giac")

[Out]

-1/2*((5*a*b^2 + 3*b^3)*arctan(1/2*(a*e^(2*d*x + 2*c) + b*e^(2*d*x + 2*c) + a - b)/sqrt(a*b))/((a^4 + 2*a^3*b
+ a^2*b^2)*sqrt(a*b)) - 2*(d*x + c)/(a^2 + 2*a*b + b^2) + 2*(2*a^3*e^(4*d*x + 4*c) + 6*a^2*b*e^(4*d*x + 4*c) +
 5*a*b^2*e^(4*d*x + 4*c) + 3*b^3*e^(4*d*x + 4*c) + 4*a^3*e^(2*d*x + 2*c) + 4*a^2*b*e^(2*d*x + 2*c) - 4*a*b^2*e
^(2*d*x + 2*c) - 6*b^3*e^(2*d*x + 2*c) + 2*a^3 + 6*a^2*b + 7*a*b^2 + 3*b^3)/((a^4 + 2*a^3*b + a^2*b^2)*(a*e^(6
*d*x + 6*c) + b*e^(6*d*x + 6*c) + a*e^(4*d*x + 4*c) - 3*b*e^(4*d*x + 4*c) - a*e^(2*d*x + 2*c) + 3*b*e^(2*d*x +
 2*c) - a - b)))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\mathrm {coth}\left (c+d\,x\right )}^2}{{\left (b\,{\mathrm {tanh}\left (c+d\,x\right )}^2+a\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(c + d*x)^2/(a + b*tanh(c + d*x)^2)^2,x)

[Out]

int(coth(c + d*x)^2/(a + b*tanh(c + d*x)^2)^2, x)

________________________________________________________________________________________